

Implementation

Our teaching and learning style at Upwell requires a daily mathematics lesson, except in specific circumstances (e.g. class trips, themed or sporting days). The class teacher is responsible for the planning of mathematics and the delivery of the objectives should be in line with the structure of the whole school curriculum map which is based upon the White Rose Maths Hub 2018/19 (other than Year 6, which has been adapted to ensure coverage of all objectives prior to SATs.). Teacher's detail their sequencing of the objectives in half termly plans. The objectives derive from the National Curriculum 2014. Basic skills not detailed in the NC are also included e.g. doubling and halving.

During each lesson, pupils are informed of what they are learning and success criteria will be shared or generated together to support pupils of all abilities to be successful.

Teachers match learning activities to the objectives with high expectations of pupils to reach the highest standard during the lesson or series of lessons. Upwell Academy fosters the CPA approach to mathematical learning, giving experiences of maths in concrete, pictorial and abstract form. Opportunities to develop fluency, reasoning and problem solving are expected in every lesson and/or across a series of lessons on each objective. Whole class, group and individual teaching will be used as deemed appropriate by the class teacher. Support may be provided though adaptations to tasks, support through prompts and adult support.

Early Years - In EYFS a range of Mathematics activities should be provided for the children to access independently, in order to practise their skills, or through an adult led activity, in order for children's understanding of Mathematics to be strengthened. It is important to ensure that the children see and use mathematics in as many practical and real -life contexts as possible e.g. outdoors and through role-play. Throughout the curriculum, opportunities exist to extend and promote mathematics. Teachers need to ensure they seek to take advantage of these cross-curricular links which are detailed in their long-term plan.

In Key Stage 1 there is an additional 5-10 minutes per day named 'Calculation Calendar'. This is to allow pupils to develop fluency in calculation strategies and reason about which methods are most efficient. Problem solving questions may also be included. In Key Stage 2 there is an additional 30 minutes per week set aside for the teaching of times tables fluency. For those pupils who have secured their times tables, children will be taught to apply those in problems and reason further e.g. apply to decimals.

Resources and the learning environment - To support the children in their daily work, every classroom should have a mathematics working wall. Every year group has access to age and ability appropriate resources to support their independence.

Teachers have a range of published materials they can use as appropriate:

- Busy Ant Maths textbooks
- White Rose Maths Hub resources
- Maths on Target Textbooks
- Hamilton Trust
- Twinkl
- Classroom Secrets

T. Ellington

There is a mathematics cupboard in the Key Stage 1 corridor which includes maths games and other practical resources such as counters, dice, place value charts, standard weights, clocks etc. Teacher should speak to the maths leader when resources are not available or in poor condition.

SEN - At our school we teach Maths to all children, whatever their ability. Maths forms an essential part of our aim to provide a broad and balanced education to all children. Through our Maths teaching we provide learning opportunities that enable all pupils to make progress. We do this by setting suitable learning challenges and responding to each child's different needs. Assessment against the National Curriculum allows us to consider each child's attainment and progress against expectations. For those pupils who are not able to access learning at an age-related level or who have specific needs (e.g. an EHCP), they may have an SEND. Teachers will provide differentiated work to meet the individual needs of these pupils. They may be given specific targets to work towards which will be recorded on their strategy sheets (see SEND information report). The school uses the Norfolk Assessment Pathways (NAP) to identify targets for these pupils. This is monitored by the SENDCO.

Impact

Teachers assess children's work in mathematics in three phases. The short-term assessments that teachers make as part of every lesson help teachers to adjust their daily plans. Teachers match these short-term assessments closely to the teaching objectives. They are recorded on Pupil Asset in the 'multi-tick' section. Our mathematics overview shows coverage throughout the year and how some topics are revisited.
They use medium-term assessments to measure progress against the key objectives, and to help them plan for the next unit of work. This is in the form of termly assessments, which are assessed against the yearly learning objectives.
Teachers make long-term assessments towards the end of the school year, and they use these to assess progress against school and national targets. With the help of these longterm assessments, teachers are able to set targets for the next school year and summarise the progress of each child before discussing it with the child's parents. These longterm assessments are made using end-of-year tests, termly assessments and teacher assessments. Children undertake the national tests at the end of Year 2 and Year 6 , plus assessments at the end of Years 1, 3, 4 and 5.
Each half term teacher assessments are fed into Pupil Asset for analysis by senior leaders and the subject leader.

Monitoring and Review - Monitoring of the standards of the children's work and of the quality of teaching in mathematics is the responsibility of the mathematics subject leader. The work of the subject leader also involves supporting colleagues in the teaching of mathematics, being informed about current developments in the subject, and providing a strategic lead and direction for the subject in the school. The subject leader gives the Principal and Governing Body an annual summary report in which s/he evaluates the strengths and weaknesses in the subject and indicates areas for further improvement. Mathematics management time is given in order to enable the subject leader to review samples of the children's work and undertake lesson observations of mathematics teaching across the school.

The quality of mathematics teaching and learning is made through triangulation of various monitoring, including:

- Work scrutiny;
- Lesson observations;
- Learning walks;
- Data analysis;
- Planning checks
- Pupil voice.
T. Ellington

Upwell Academy Curriculum Overview - Mathematics

COUNTING						
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Count/order 1-20	count to and across 100, forwards and backwards, beginning with 0 or 1 , or from any given number			count backwards through zero to include negative numbers	interpret negative numbers in context, count forwards and backwards with positive and negative whole numbers, including through zero	use negative numbers in context, and calculate intervals across zero
Know/ say 1 more, 1 less up to 20 Count in 2 s up to 20 Begin to use concrete representations for numbers up to 20	count, read and write numbers to 100 in numerals; count in multiples of twos, fives and tens	count in steps of 2, 3, and 5 from 0 , and in tens from any number, forward or backward	count from 0 in multiples of $4,8,50$ and 100;	count in multiples of 6, 7, 9, 25 and 1000	count forwards or backwards in steps of powers of 10 for any given number up to 1000000	
Count on/back in 1s up to 10 Write numbers to 10 in words +/-1-digit numbers	given a number, identify one more and one less		find 10 or 100 more or less than a given number	find 1000 more or less than a given number		
COMPARING NUMBERS						
	use the language of: equal to, more than, less than (fewer), most, least	compare and order numbers from 0 up to 100 ; use $<$, $>$ and $=$ signs	compare and order numbers up to 1 000	order and compare numbers beyond 1000	read, write, order and compare numbers to at least 1000000 and	read, write, order and compare numbers up to
				compare numbers with the same number of decimal places up to two decimal places (copied from Fractions)	determine the value of each digit (appears also in Reading and Writing Numbers)	10000000 and determine the value of each digit (appears also in Reading and Writing Numbers)
	IDENTIFYING, REPRESENTING AND ESTIMATING NUMBERS					
	identify and represent numbers using objects and pictorial representations including the number line	identify, represent and estimate numbers using different representations, including the number line	identify, represent and estimate numbers using different representations	identify, represent and estimate numbers using different representations		

READING AND WRITING NUMBERS (including Roman Numerals)						
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	Read and write numbers from 1 to 20 in numerals and words.	read and write numbers to at least 100 in numerals and in words	read and write numbers up to 1000 in numerals and in words	Read Roman numerals to 100 (I to C) and know that over time, the numeral system changed to include the concept of zero and place value.	read, write, order and compare numbers to at least 1000000 and determine the value of each digit (appears also in Comparing Numbers)	read, write, order and compare numbers up to 10000000 and determine the value of each digit (appears also in Understanding Place Value)
			tell and write the time from an analogue clock, including using Roman numerals from I to XII, and 12 -hour and 24 -hour clocks (copied from Measurement)		Read Roman numerals to 1000 (M) and recognise years written in Roman numerals.	
	UNDERSTANDING PLACE VALUE					

		recognise the place value of each digit in a two-digit number (tens, ones)	recognise the place value of each digit in a three-digit number (hundreds, tens, ones)	recognise the place value of each digit in a four-digit number (thousands, hundreds, tens, and ones)	read, write, order and compare numbers to at least 1000000 and determine the value of each digit (appears also in Reading and Writing Numbers)	read, write, order and compare numbers up to 10000000 and determine the value of each digit (appears also in Reading and Writing Numbers)
				find the effect of dividing a one- or two-digit number by 10 and 100, identifying the value of the digits in the answer as units, tenths and hundredths (copied from Fractions)	recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents (copied from Fractions)	identify the value of each digit to three decimal places and multiply and divide numbers by 10,100 and 1000 where the answers are up to three decimal places (copied from Fractions)
			ROUNDING			
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
				round any number to the nearest $10,100 \text { or } 1000$	round any number up to 1000000 to the nearest $10,100,1000,10$ 000 and 100000	round any whole number to a required degree of accuracy
				round decimals with one decimal place to the nearest whole number (copied from Fractions)	round decimals with two decimal places to the nearest whole number and to one decimal place (copied from Fractions)	solve problems which require answers to be rounded to specified degrees of accuracy (copied from Fractions)
			PROBL	SOLVING		
		use place value and number facts to solve problems	Solve number problems and practical problems involving these ideas.	solve number and practical problems that involve all of the above and with increasingly large positive numbers	solve number problems and practical problems that involve all of the above	solve number and practical problems that involve all of the above

NUMBER BONDS						
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	represent and use number bonds and related subtraction facts within 20	recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100				
	MENTAL CALCULATION					
	add and subtract one-digit and two-digit numbers to 20 , including zero	add and subtract numbers using concrete objects, pictorial representations, and mentally, including: a two-digit number and ones a two-digit number and tens two two-digit numbers adding three one-digit numbers	add and subtract numbers mentally, including: a three-digit number and ones a three-digit number and tens a three-digit number and hundreds		add and subtract numbers mentally with increasingly large numbers	perform mental calculations, including with mixed operations and large numbers
	read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs (appears also in Written Methods)	show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot				use their knowledge of the order of operations to carry out calculations involving the four operations

Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Add \& subtract two single digit numbers Count on/back to find an answer Know symbols + - =	read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs (appears also in Mental Calculation)		add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction	add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate	add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction)	
INVERSE OPERATIONS, ESTIMATING AND CHECKING ANSWERS						
		Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems.	estimate the answer to a calculation and use inverse operations to check answers	estimate and use inverse operations to check answers to a calculation	use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy	Use estimation to check answers to calculations and determine, in the context of a problem, levels of accuracy.
	P PROBLEM SOLVING					
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Solve money problems involving concrete and pictorial and recognise value of coins up to 10p Add/subtract numbers up to 10	solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as$7=\square-9$	solve problems with addition and subtraction: using concrete objects and pictorial representations, including those involving numbers, quantities and measures applying their increasing knowledge of mental and written methods	solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction	solve addition and subtraction twostep problems in contexts, deciding which operations and methods to use and why	solve addition and subtraction multistep problems in contexts, deciding which operations and methods to use and why	solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why
		solve simple problems in a practical context involving addition and subtraction of money of the same unit, including giving change (copied from Measurement)				Solve problems involving addition, subtraction, multiplication and division

MULTIPLICATION \& DIVISION FACTS						
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Solve problems including doubling, halving, and sharing Create arrays, know the language Know x symbol means multiply Know division symbol means to divide/share	count in multiples of twos, fives and tens (copied from Number and Place Value)	count in steps of 2, 3, and 5 from 0 , and in tens from any number, forward or backward (copied from Number and Place Value)	count from 0 in multiples of $4,8,50$ and 100 (copied from Number and Place Value)	count in multiples of 6, 7, 9, 25 and 1000 (copied from Number and Place Value)	count forwards or backwards in steps of powers of 10 for any given number up to 1000000 (copied from Number and Place Value)	
		recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers	recall and use multiplication and division facts for the 3,4 and 8 multiplication tables	recall multiplication and division facts for multiplication tables up to 12×12		
	MENTAL CALCULATION					
			write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers of times one-digit numbers, using mental and progressing to formal written methods (appears also in Written Methods)	use place value, known and derived facts to multiply and divide mentally, including multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers	multiply and divide numbers mentally drawing upon known facts	perform mental calculations, including with mixed operations and large numbers
		show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot		recognise and use factor pairs and commutativity in mental calculations (appears also in Properties of Numbers)	multiply and divide whole numbers and those involving decimals by 10 , 100 and 1000	associate a fraction with division and calculate decimal fraction equivalents (e.g., 0.375) for a simple fraction (e.g., ${ }^{3 / 8}$) (copied from Fractions)

T. Ellington

WRITTEN CALCULATION								
Reception	Year 1	Year 2	Year 3 Year 4		Year 5		Year 6	
		calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (\times), division (\div) and equals (=) signs	write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times onedigit numbers, using mental and progressing to formal written methods (appears also in Mental Methods)	multiply two-digit and threedigit numbers by a one-digit number using formal written layout	multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers		multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication	
					divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context		divide numbers up to 4-digits by a two-digit whole number using the formal written method of short division where appropriate for the context divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context	
							use written division methods in cases where the answer has up to two decimal places (copied from Fractions (including decimals))	
PROPERTIES OF NUMBERS: MULTIPLES, FACTORS, PRIMES, SQUARE AND CUBE NUMBERS								
Reception	Year 1	Year 2	Year 3	Year 4		Year 5		Year 6
				recognise and use factor pairs and commutativity in mental calculations (repeated)		identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers.		identify common factors, common multiples and prime numbers
						know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers		use common factors to simplify fractions; use common multiples to express fractions in the same denomination (copied from Fractions)
						establish whether a number up to 100 is prime and recall prime numbers up to 19		
						recognise and use square numbers and cube numbers, and the notation for squared (${ }^{2}$) and cubed (${ }^{3}$)		calculate, estimate and compare volume of cubes and cuboids using standard units, including centimetre cubed $\left(\mathrm{cm}^{3}\right)$ and cubic metres $\left(\mathrm{m}^{3}\right)$, and extending to other units such as mm^{3} and km^{3} (copied from Measures)

PROBLEM SOLVING						
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher	solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts	solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects	solve problems involving multiplying and adding, including using the distributive law to multiply two-digit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to mobjects	solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes	solve problems involving addition, subtraction, multiplication and division
					solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign	
					solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates	solve problems involving similar shapes where the scale factor is known or can be found (copied from Ratio and Proportion)

COUNTING IN FRACTIONAL STEPS						
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
		count in fractions up to 10, starting from any number and using the 1/2 and $2 / 4$ equivalence on the number line (Non-Statutory Guidance)	count up and down in tenths	count up and down in hundredths		
	RECOGNISING FRACTIONS					
Solve problems including doubling, halving \& sharing. Recognise half a regular shape (square, rectangle)	recognise, find and name a half as one of two equal parts of an object, shape or quantity	recognise, find, name and write fractions ${ }^{1} / 3^{1} / 4_{4},{ }^{2} /$ and $_{4}^{3} /$ of a length, shape, set of objects or quantity	recognise, find and write fractions of a discrete set of objects: unit fractions and non-unit fractions with small denominators recognise that tenths arise from dividing an object into 10 equal parts and in dividing one - digit numbers or quantities by 10 . recognise and use fractions as numbers: unit fractions and non-unit fractions with small denominators	recognise that hundredths arise when dividing an object by one hundred and dividing tenths by ten	recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents (appears also in Equivalence)	
	COMPARING FRACTIONS					
			compare and order unit fractions, and fractions with the same denominators		compare and order fractions whose denominators are all multiples of the same number	compare and order fractions, including fractions >1

T. Ellington

T. Ellington

T. Ellington

			solve problems that involve all of the above	solve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities, including non-unit fractions where the answer is a whole number	solve problems involving numbers up to three decimal places	
				solve simple measure and money problems involving fractions and decimals to two decimal places.	solve problems which require knowing percentage and decimal equivalents of denominator of a multiple of 10 or 25.	

COMPARING AND ESTIMATING						
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	compare, describe and solve practical problems for: lengths and heights [e.g. long/short, longer/shorter, tall/short, double/half] mass/weight [e.g. heavy/light, heavier than, lighter than] capacity and volume [e.g. full/empty, more than, less than, half, half full, quarter] time [e.g. quicker, slower, earlier, later]	compare and order lengths, mass, volume/capacity and record the results using >, < and $=$		estimate, compare and calculate different measures, including money in pounds and pence (also included in Measuring)	calculate and compare the area of squares and rectangles including using standard units, square centimetres $\left(\mathrm{cm}^{2}\right)$ and square metres (m) of irregular shapes (also included in measuring)	calculate, estimate and compare volume of cubes and cuboids using standard units, including centimetre cubed (cm^{3}) and cubic metres (m^{3}), and extending to other units such as mm^{3} and km^{3}.
					estimate volume (e.g. using $1 \mathrm{~cm}^{3}$ blocks to build cubes and cuboids) and capacity (e.g. using water)	
	sequence events in chronological order using language [e.g. before and after, next, first, today, yesterday, tomorrow, morning, afternoon and evening]	compare and sequence intervals of time	compare durations of events, for example to calculate the time taken by particular events or tasks			
			estimate and read time with increasing accuracy to the nearest minute; record and compare time in terms of seconds, minutes, hours and o'clock; use vocabulary such as a.m./p.m., morning, afternoon, noon and midnight (appears also in Telling the Time)			
MEASURING and CALCULATING						
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6

T. Ellington

Use everyday language for size, weight, capacity, position, distance, time \& money to compare quantities and objects and solve problems Know a measurement is recorded using different types of	measure and begin to record the following: lengths and heights mass/weight capacity and volume time (hours, minutes, seconds)	choose and use appropriate standard units to estimate and measure length/height in any direction (m / cm); mass (kg / g); temperature $\left({ }^{\circ} \mathrm{C}\right)$; capacity (litres $/ \mathrm{ml}$) to the nearest appropriate unit, using rulers, scales, thermometers and measuring vessels	measure, compare, add and subtract lengths ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$); mass (kg/g); volume/capacity (1/ml)	estimate, compare and calculate different measures, including money in pounds and pence (appears also in Comparing)	Use all four operations to solve problems involving measure (e.g. length, mass, volume, money) using decimal notation including scaling.	solve problems involving the calculation and conversion of units of measure, using decimal notation up to three decimal places where appropriate (appears also in Converting)
equipment Have experience of ruler, measuring tape, scales, clock, money			measure the perimeter of simple 2-D shapes	measure and calculate the perimeter of a rectilinear figure (including squares) in centimetres and metres	measure and calculate the perimeter of composite rectilinear shapes in centimetres and metres	recognise that shapes with the same areas can have different perimeters and vice versa
Know days of the week, seasons of year						

IDENTIFYING SHAPES AND THIER PROPERTIES								
Reception	Year 1	Year 2	Year 3	Year 4		Year 5	Year 6	
Explore the properties of everyday shapes and objects and use mathematical language to describe them Know language for and recognise square, triangle, rectangle, circle Recognise, create and describe patterns	recognise and name common 2-D and 3-D shapes, including: 2-D shapes [e.g. rectangles (including squares), circles and triangles] 3-D shapes [e.g. cuboids (including cubes), pyramids and spheres].	identify and describe the properties of 2-D shapes, including the number of sides and line symmetry in a vertical line		identify lines of symmetry in 2-D shapes presented in different orientations		identify 3-D shapes, including cubes and other cuboids, from 2-D representations	recognise, describe and build simple 3-D shapes, including making nets (appears also in Drawing and Constructing)	
		identify and describe the properties of 3-D shapes, including the number of edges, vertices and faces				illustrate and name parts of circles, including radius, diameter and circumference and know that the diameter is twice the radius		
		identify 2-D shapes on the surface of 3-D shapes, [for example, a circle on a cylinder and a triangle on a pyramid]						
DRAWING AND CONSTRUCTING								
			draw 2-D shapes and make 3-D shapes using modelling materials; recognise 3-D shapes in different orientations and describe them	complete a simple symmetric figure with respect to a specific line of symmetry		draw given angles, and measure them in degrees (${ }^{\circ}$)	draw 2-D shapes using given dimensions and angles	
						recognise, describe and build simple 3-D shapes, including making nets appears also in Identifying Shapes and Their Properties)		
COMPARING AND CLASSIFYING								
Reception	Year 1	Year 2	Year 3	Year 4			Year 5	Year 6
		e and sort common $3-D$ shapes and y objects		compare and classify geometric shapes, including quadrilaterals and triangles, based on their properties and sizes	use the properties of rectangles to deduce related facts and find missing lengths and angles		compare and classify geometric shapes based on their properties and sizes and find unknown angles in any triangles, quadrilaterals, and regular polygons	
					distingu polygon sides an	setween regular and irregular based on reasoning about equal angles		

T. Ellington

	ANGLES						
				recognise angles as a property of shape or a description of a turn		know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles	
				identify right angles, recognise that two right angles make a half-turn, three make three quarters of a turn and four a complete turn; identify whether angles are greater than or less than a right angle	identify acute and obtuse angles and compare and order angles up to two right angles by size	identify: angles at a point and one whole turn (total 360°) angles at a point on a straight line and $1 / 2$ a turn (total 180°) other multiples of 90°	recognise angles where they meet at a point, are on a straight line, or are vertically opposite, and find missing angles
				identify horizontal and vertical lines and pairs of perpendicular and parallel lines			

POSITION, DIRECTION AND MOVEMENT						
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	describe position, direction and movement, including half, quarter and three-quarter turns.	use mathematical vocabulary to describe position, direction and movement including movement in a straight line and distinguishing between rotation as a turn and in terms of right angles for quarter, half and three-quarter turns (clockwise and anti-clockwise)		describe positions on a 2-D grid as coordinates in the first quadrant	identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language, and know that the shape has not changed	describe positions on the full coordinate grid (all four quadrants)
				describe movements between positions as translations of a given unit to the left/right and up/down		Draw and translate simple shapes on the coordinate plane and reflect them in the axes.
				plot specified points and draw sides to complete a given polygon		
	PATTERN					
		order and arrange combinations of mathematical objects in patterns and sequences				

		interpret and construct simple pictograms, tally charts, block diagrams and simple tables	interpret and present data using bar charts, pictograms and tables	interpret and present discrete and continuous data using appropriate graphical methods, including bar charts and time graphs	complete, read and interpret information in tables, including timetables	interpret and construct pie charts and line graphs and use these to solve problems
		ask and answer simple questions by counting the number of objects in each category and sorting the categories by quantity				
		ask and answer questions about totalling and comparing categorical data				
SOLVING PROBLEMS						
			solve one-step and two-step questions [e.g. 'How many more?' and 'How many fewer?'] using information presented in scaled bar charts and pictograms and tables.	solve comparison, sum and difference problems using information presented in bar charts, pictograms, tables and other graphs.	solve comparison, sum and difference problems using information presented in a line graph	calculate and interpret the mean as an average

FORMULAE						
Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
				perimeter can be expressed		use simple formulae
				algebraically as $2(a+b)$ where a and b are the dimensions in the same unit. (Copied from NSG measurement)		recognise when it is possible to use formulae for area and volume of shapes (copied from Measurement)
SEQUENCES						
	sequence events in chronological order using language such as: before and after, next, first, today,	compare and sequence intervals of time (copied from Measurement)				generate and describe linear number sequences

T. Ellington

| | yesterday, tomorrow, morning,
 afternoon and evening
 (copied from Measurement) | order and arrange combinations of
 mathematical objects in patterns
 (copied from Geometry: position
 and direction) | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

