Eastern Multi-Academy Trust

Calculations Policy

Aims:

- To provide a concrete, pictorial and abstract (CPA) teaching approach that enables us to deliver on our mathematics intent statement, which also develops our children's conceptual understanding
- To ensure consistency and progression in our approach to calculation
- To ensure that children develop an efficient, reliable, formal written method of calculation for all operations

How to use this policy:

- Use the policy as the basis of your planning but ensure you use previous or following stages' guidance to allow for personalised learning
- Cross reference with the National Curriculum end of year number skills expectations for each year group
- Use Assessment for Learning to identify suitable next steps in calculation for groups of children
- If, at any time, children are making significant errors, return to the previous stage in calculation
- Always model a CPA approach to allow children to see the links and to make rich connections
- Teach addition and subtraction at the same time to demonstrate how they link and the inverse law
- Teach multiplication and division at the same time to demonstrate the links between these operations and the inverse law
- All written methods should be presented to the children alongside resources and images in order to ensure that children develop their conceptual understanding of the written method being taught.
- It should also be made clear that it is not a process that the children use for every type of calculation, but rather chosen when it is not appropriate to complete the calculation mentally or mentally with jotting.

As such, children should be encouraged to:

- Look at a calculation and decide whether it can be done mentally, mentally with a jotting or whether it needs a written method.
- Estimate, calculate and check to ensure that the answer they generate has some meaning.

The policy also outlines the mental strategies that children should be encouraged to use. These generally fall into one of two categories:

- A mental strategy that they can always rely on (e.g. counting in tens and ones, forwards and backwards, for example $56-25$ would involve counting back in 10s $-56,46,36$ - and then back in ones $-36,35,34,33,32,31$)
- A special strategy they can select if they can see something special about the numbers they are being asked to calculate with (e.g. using near doubles to solve 46-24, by working out 46-23-1)

Note: In order to develop understanding of the = sign, its position should be varied in number sentences/equations and empty box/missing number problems utilised when teaching calculations from Year 1 onwards.

Page $\mathbf{N}^{\mathbf{0}}$	Content	Page $\mathbf{N}^{\mathbf{0}}$	
4	Overview of the different models - addition and subtraction. Part-Whole Model	42 \& 43	Stage 7: Year 5/6 objectives. Skill: Subtract decimals with up to 3 decimal places
5	Bar Model (single)	44	Overview of the different models - multiplication and division. Bar Model
6	Bar Model (multiple)	45	Numicon
7	Numicon	46	Bead Strings
8	Cubes	47	Number Tracks
9	Ten Frames (within 10)	48	Number Lines (labelled)
10	Ten Frames (within 20)	49	Number Lines (blank)

11	Bead Strings	50	Base 10/Dienes (multiplication)
12	Number Tracks	51	Base 10/Dienes (division)
13	Number Lines (labelled)	52	Place value counters (multiplication)
14	Number lines (blank)	53	Place value counters (division)
15	Straws	54	Multiplication (Key Vocabulary \& Mental Strategies)
16	Base 10/Dienes (addition)	55 \& 56	Stage 1: Year 1/2 objectives. Skill: Solve 1-step problems using multiplication
17	Base 10/Dienes (subtraction)	57 \& 58	Stage 2: Year 3/4 objectives. Skill: Multiply 2-digit numbers by 1-digit numbers
18	Place Value Counters (addition)	59	Stage 3: Year 3/4 objectives. Skill: Multiply 3-digit numbers by 1-digit numbers
19	Place Value Counters (subtraction)	60	Stage 4: Year 5 objective. Skill: Multiply 4-digit numbers by 1-digit numbers
20	Partitioning	61	Stage 5: Year 5 objective. Skill: Multiply 2-digit numbers by 2-digit numbers
21	Same concept, different representations	62	Stage 6: Year 5 objective. Skill: Multiply 3-digit numbers by 2-digit numbers
22	Addition (Key Vocabulary \& Mental Strategies)	63	Stage 7: Year 5/6 objectives. Skill: Multiply 4-digit numbers by 2-digit numbers
23	Stage 1: Year 1 objective. Skill: Add 1-digit numbers within 10	64	Division (Key Vocabulary \& Mental Strategies)
24	Stage 2: Year 1/2 objectives. Skill: Add 1 and 2-digit numbers to 20	65	Stage 1: Year 1/2 objectives. Skill: Solve 1-step problems using division (sharing)
25	Stage 3: Year 2 objective. Skill: Add three 1-digit numbers	66	Stage 2: Year 1/2 objectives. Skill: Solve 1-step problems using division (grouping)
26	Stage 4. Year 2/3 objectives. Skill: Add 1-digit and 2-digit numbers to 100	67	Stage 3: Year 1/2 objectives. Skill: Divide 2-digit numbers by 1-digit (sharing no exchange)
27 \& 28	Stage 5: Year 2/3 objectives. Skill: Add two 2-digit numbers to 100	68-72	Stage 4: Year 3/4 objectives. Skill: Divide 2-digits by 1-digit (sharing with exchange)
29 \& 30	Stage 6: Year 3 objective. Skill: Add numbers with up to 3 digits	73	Stage 5: Year 3/4 objectives. Skill: Divide 2-digit numbers by 1-digit (sharing with remainders)
31	Stage 7: Year 4 objective. Skill: Add numbers with up to 4 digits	74	Stage 6: Year 4/5 objectives. Skill: Divide 2-digits by 1-digit (grouping)
32	Stage 8: Year 5/6 objectives. Skill: Add numbers with more than 4 digits	75	Stage 7: Year 4 objective. Skill: Divide 3-digit by 1-digit (sharing)
33	Stage 9: Year 5/6 objectives. Skill: Add decimals with up to 3 decimal places	76	Stage 8: Year 5 objective. Skill: Divide 3-digits by 1-digit (grouping)
34	Subtraction (Key Vocabulary \& Mental Strategies)	77	Stage 9: Year 5 objective. Skill: Divide 4-digits by 1-digit (grouping)
35	Stage 1: Year 1 objective. Skill: Subtract 1-digit numbers within 10	78	Stage 10: Year 6 objective. Skill: Divide multi-digits by 2-digits (short division)
36	Stage 2: Year 1/2 objectives. Skill: Subtract 1 and 2-digit numbers to 20	79	Stage 11: Year 6 objective. Skill: Divide multi-digits by 2-digits (long division)
37 \& 38	Stage 3: Year 2 objective. Skill: Subtract 1 and 2-digit numbers to 100	80	Stage 12: Year 6 objective. Skill: Divide multi-digits by 2-digits (long division)
39	Stage 4: Year 3 objective. Skill: Subtract numbers with up to three digits		
40	Stage 5: Year 4 objective. Skill: Subtract numbers with up to 4 digits		
41	Stage 6: Year 5/6 objectives. Skill: Subtract numbers with more than 4 digits		

Overview of the different models - addition and subtraction

Part-Whole Model

Key points

- Supports children in their understanding of partitioning and aggregation.

Bar Model (single)

Key points

- Cuisenaire rods, cubes and counters and can be used in a line as a concrete representation of the bar model.

- Can be used as another type of part-whole model to support children in representing calculations.
- Discrete bar models - with each box representing one whole - are a good starting point with smaller numbers
- Combination bar models can support children to count on from the larger number.
- Continuous bar models can be used for a range of values and the question mark indicates the missing value.
- In KS2, bar models can be used to represent larger numbers, decimals and fractions
- Bar models can be used to support children when solving word problems. Children can draw a bar model and use it to represent what is known and unknown in the problem. They then use an appropriate method to solve the problem.

Cubes

Key points

Key points

- When adding two single digits, children can make each number on a separate tens frame before moving part of one number to make 10
- This shows children how they have partitioned one of the numbers to make 10, which makes links to effective mental methods of addition.
- When subtracting, firstly make the larger number on 2 ten frames. Then, remove the smaller number and think how you have partitioned the number to make 10. This supports mental methods of subtraction.
- When adding three single-digit numbers, children can make each number on a separate ten frame.
- Then, they can look to see if they can make a number bond to 10 , which would make the calculation easier.
- Here, the ten frames support mental methods of addition and commutativity.

Bead Strings

--0 -000000000000000000--000-00000000000000000-

Key points

10 bead strings

- Effective at helping children investigate number bonds to 10.
- Moving one bead at a time allows children to systematically find all the number bonds to 10 , whilst also linking to partitioning. $2+8=10.3+$ $7=10$.

20 bead strings

- Group beads into fives.
- Children can apply their knowledge of number bonds to 10 and see the links to number bonds to 20
100 bead strings
- Grouped in tens.
- Support number bonds to 100.
- Offer support when adding by making 10.
- Provide a link to adding to the next ten on number lines, which supports a mental method of addition.

$8+7=15$
$m m m$

Key points

- Supports children's understanding of augmentation and reduction.
- When adding, children count on to find the total.
- Children can place a counter on the starting number and then count on to find the total.
- When subtracting, children count back to find their answer.
- They start at the minuend and then take away the subtrahend to find the difference.
- Work well alongside ten frames and bead strings as they all model counting on or counting back.

$$
\begin{aligned}
& \text { unbundle group } \\
& \text { of } 10 \text { straws }
\end{aligned}
$$

Key points

- Effective way of supporting children to understand exchanging when adding or subtracting 2 -digit numbers.
- Introduces the idea of bundling groups of ten.
- When adding, children bundle a group of 10 straws to represent the exchange from 10 ones to 1 ten.
- They then find the total by adding the bundles (tens) and individual straws (ones).
- When subtracting, children can unbundle a group of 10 straws to represent the exchange from 1 ten to 10 ones.
- Straws provide a good step towards adding and subtracting with Base 10/Dienes.

$$
\begin{aligned}
& 29=10+10+9 \\
& 29=2 \text { tens }+9 \text { ones } \\
& 29=20+9 \\
& 29=29 \text { ones }
\end{aligned}
$$

$29=2$ tens +9 ones
$29=20+9$
$29=10+10+9$
$29=29$ ones
$29=1$ ten +19 ones
$29=10+19$

Key points

- Provides an effective way to support children's understanding of column addition.
- It is imperative that children write out their calculations alongside using or drawing Base 10 so they can see the clear links between the model and the written method.
- Children should first add without exchange.
- This representation becomes less efficient with larger numbers.
- The next step is to use place value counters.
- When adding, always add from the smallest place value column.
- Key questions to ask the children:
- How many ones are there altogether?
- Can we make an exchange? (Yes or No).
- How many do we exchange? (10 ones for 1 ten)
- Show the exchanged 10 in the tens column by drawing and writing 1 below the column.
- How many ones do we have left? (Write the digit in the ones column).
- Repeat for each column.

Base 10/Dienes (subtraction)

Key points

- Provides an effective way to support children's understanding of column subtraction.
- It is imperative that children write out their calculations alongside using or drawing Base 10 so they can see the clear links between the model and the written method.
- Children should first subtract without exchange.
- When building the model, children should just make the minuend (a number or quantity from which another number is subtracted) using Base 10.
- Then, they subtract the subtrahend (a number to be subtracted from another).
- Highlight this difference to addition to avoid errors by making both numbers.
- Children start by subtracting from the smallest place value column.
- When there are not enough ones/tens/hundreds to subtract in a column, children need to exchange from the column to the left (1 ten for 10 ones).
- They can then subtract efficiently.
- This model is efficient with up to 4-digit numbers.
- Place value counters are more efficient with larger numbers.

Place Value Counters (subtraction)

Hundreds	Tens	Ones
$\varnothing 0$		

${ }^{3} 4357$

- 2735

1622

Key points

- Provides an effective way to support children's understanding of column subtraction.
- It is imperative that children write out their calculations alongside using or drawing counters to develop their conceptual understanding.
- First subtract without exchange.
- Normal counters on a place value grid can also be used to enable children to experience the exchange between columns.
- When building the model, children should just make the minuend (a number or quantity from which another number is subtracted) using counters.
- Then, they subtract the subtrahend (a number to be subtracted from another).
- Highlight this difference to addition to avoid errors by making both numbers.
- Children start by subtracting from the smallest place value column.
- When there are not enough ones/tens/hundreds to subtract in a column, children need to exchange from the column to the left (1 ten for 10 ones).
- They can then subtract efficiently.

Partitioning

```
237+392=629
200+300=500
30+90=120
7+2=9
500+100=600
20
q
```


Key points

- Partitioning is a way of splitting numbers into smaller parts to make them easier to work with.
- Partitioning links closely to place value.
- For example, the number 54 represents 5 tens and 4 ones.
- This shows how the number can be partitioned into 50 and 4.
- Partitioning can be used horizontally or vertically as show by the pictures.

Place value counters

Place value grid

Cuisenaire rods

Tens	Ones

Addition

```
Key Vocabulary
Addend - A number to be added to another
Aggregation - combining two or more quantities or
measures to find a total
Augmentation - increasing a quantity or measure by
another quantity
Commutative - numbers can be added in any order
Exchange - change a number or expression or
another of an equal value
Partitioning - splitting a number into its component
parts
Subitise - instantly recognize the number of objects in
a small group without needing to count
Sum - the result of addition
Total - the aggregate or the sum found by addition
Mental Strategies (see Teaching Children to Calculate Mentally for more details and activities to develop
these)
Counting forwards (e.g. in 1s, 10s, 100s, etc.)
Reordering (e.g. adding linked numbers first, such as pairs that make 10, or starting with the larger number,
etc.)
Partitioning (e.g. adding tens then units, etc.)
Bridging through multiples of 10 (e.g. 6+7 calculated as 6+4+3, etc.)
Compensating (e.g. 34+9 calculated as 34+10-1, etc.)
Near doubles (e.g. 13+14 calculated as double 13+1, etc.)
```


Skill: Add numbers with up to 3 digits

	When adding numbers with up to 3 digits, Base 10 and place value counters are the most effective concrete resources. Always model the concrete resources and/or pictorial representations alongside the column method. Ensure children do the same in order for them to see how the manipulatives link to the formal method. If there is nothing in a place value column, we use 0 as a place holder. Start from the right hand column and work to the left. Shows exchange when there are 10 in a column.

Stage 9: Year 5/6 objectives	Skill: Add decimals with up to 3 decimal places

When adding decimals with up to 3
decimal places, place value counters or
plain counters on a place value grid are
the most effective concrete resources.
Always model the concrete resources
and/or pictorial representations
alongside the column method. Ensure
children do the same in order for them
to see how the manipulatives link to the
formal method.
Encourage children to work in the
abstract form by using the column
method to efficiently add large
numbers.
Adding money should be used at this
stage to add context.
If there is nothing in a place value
column, we use 0 as a place holder.
Start from the right hand column and
work to the left. Shows exchange when
there are 10 in a column.

Subtraction

Key Vocabulary

```
Difference - the numerical difference between two
numbers is found by comparing the quantity in each
group
Exchange - change a number or expression or
another of an equal value
Minuend - a quantity or number from which another is
subtracted
```

Mental Strategies (see Teaching Children to Calculate Mentally for more details and activities to develop
these)
Counting backwards (e.g. in 1s, 10s, 100s, etc.)
Counting forwards to find the difference (e.g. in $1 \mathrm{~s}, 10 \mathrm{~s}, 100 \mathrm{~s}$, etc.)
Reordering (e.g. 12-7-2 can be reordered into 12-2-7, etc.)
Partitioning (e.g. subtracting tens then units, etc.)
Bridging through multiples of 10 (e.g. 12-7 calculated as 12-2-5, or 607-288 calculated as $288+12+300$

+ 7)

Compensating (e.g. 70-9 calculated as 70-10+1, or 405-399 calculated as 405-400+5, etc.)
Stage 1: Year 1 objective

Skill: Subtract 1-digit numbers within 10

The following models support partitioning:

Overview of the different models - multiplication and division

Numicon

$5 \times 4=20$
$4 \times 5=20$

$5 \times 4=20$
$4 \times 5=20$

0000000

$$
18 \div 3=6
$$

Key points

- Numicon can be used to represent repeated addition.
- Multiplications can be built in a row by placing down the numicon.
- Can should interlock the shapes when using odd numbers.
- They can check the total by placing other numicon pieces on top, such as the tens pieces.
- The following patterns within multiplication can be seen when using numicon:
- Odd x odd $=$ even
- Odd x even $=$ odd
- Even x even = even
- Numicon can be used to support children's understanding of grouping when dividing.
- Children can make the number they are dividing and then place the number they are diving by over the top to find how many groups of the number there are.
- For example, there are 6 groups of 3 in 18.

Bead Strings

$-000-000-000-000-000-$

$$
\begin{aligned}
& 5 \times 3=15 \\
& 3 \times 5=15
\end{aligned} \quad 15 \div 3=5
$$

-00000-00000-00000-

$$
\begin{gathered}
\begin{array}{l}
5 \times 3=15 \quad 15 \div 5=3 \\
3 \times 5=15
\end{array} \\
-000-0000-0000-0000-0000-
\end{gathered}
$$

$$
\begin{array}{ll}
4 \times 5=20 \\
5 \times 4=20
\end{array} \quad 20 \div 4=5
$$

Key points

- Can support children in their understanding of multiplication as repeated addition.
- Encourage children to count in multiples as they build the number
- Children can use the bead string to count forwards and backwards in multiples as they move the beads.
- Children can build the number they are dividing and then group the beads into the number they are dividing by.
- For example, 20 divided by 4. The children make 20 first. Then they group the beads into groups of 4. Finally they count how many groups they have made to find the answer.

Number tracks

$$
18 \div 3=6
$$

Key points

- Support children's counting in multiples, forwards and backwards.
- Children can keep track of their counting by moving counters or cubes along the track.
- Translucent counters can be used to help children see the number they have landed on.
- Children place their counter on 0 to start and then count on to find the product, when multiplying.
- When dividing, children place thei counter of the number they are diving and then count back in jumps of the number they are dividing by until they reach 0 .
- The number of jumps made provides children with the answer.
- Become less efficient with larger numbers.

Key points

- Can be used to represent scaling as multiplication or division.
- Black number lines with intervals can be used to support children when representing scaling accurately.
- Children can calculate scaling problems by labelling intervals with multiples.
- Children can also use blank number lines without intervals to represent scaling.

Base 10/Dienes (multiplication)

Key points

- Provides an effective way to support children's understanding of column multiplication.
- Children need to write out the formal method when working with concrete resources or pictorial representations to help build their conceptual understanding.
- Become less efficient as the numbers or amounts of groups become larger.
- This is due to the amount of equipment needed and the number of exchanges required.
- Provides support for the area model of multiplication.
- Children build the number in a rectangular shape which they then find the area of by calculating the total value of all the pieces.
- The area model can be linked to the grid method or the formal column method of multiplying 2 -digits by 2 -digits.

Base 10/Dienes (division)		$68 \div 2=34$$72 \div 3=24$	Key points - As numbers become larger, Base 10/Dienes can be an effective way of moving children on from representing numbers as ones to representing them as tens and ones in order to divide. - Children can share the equipment between different groups by drawing circles or creating rows on a place value grid. - When sharing, Children start with the larger place value and work from left to right. - If there are any left in a column, they exchange. - For example, one ten for ten ones. - Encourage children to use the part-whole model when recording so they consider how the number has been partitioned in order to divide. - This will support them with mental methods.
Tens	Ones		
	- -		
I	- \quad.		
1	-. \quad.		

Place value counters (multiplication)

Hundreds

34
$\times \quad 5$
120
12

Key points

- Provides an effective way to support column multiplication.
- Children will need to write out the formal calculation alongside their resources/pictures to develop their conceptual understanding.
- Counters should replace Base 10/Dienes once the numbers or amount of groups become larger.
- Counters should be used to support the understanding of the written method instead of supporting the arithmetic.
- Place value counters also support the area model of multiplication.
- Children can see how to multiply 2-digit numbers by 2 - digit numbers.

Multiplication

Key Vocabulary

Array - an ordered collection of counters, cubes or other item in rows and columns.
Commutative - numbers can be multiplied in any order.
Exchange - change a number or expression for another equal value.
Multiplicand - a number to be multiplied by another

Partitioning - splitting a number into its component parts.
Product - the result of multiplying one number by another.
Scaling - enlarging or reducing a number by a given amount, called the scale factor.

Mental Strategies (see Teaching Children to Calculate Mentally for more details and activities to develop these)

Using known multiplication facts to 12×12
Doubling (including multiplying by 4 by doubling twice, multiplying by 8 by doubling 3 times, multiplying by 5 by multiplying by 10 then halving, etc.)
Multiplying by multiples of 10
Multiplying by one-digit numbers and two-digit numbers

Stage 1: Year 1/2 objectives

-00000-00000-00000-00000-

One bag holds 5 apples. How many apples do 4 bags hold?

$$
\begin{gathered}
5+5+5+5=20 \\
4 \times 5=20 \\
5 \times 4=20
\end{gathered}
$$

Skill: Solve 1-step problems using multiplication

At this stage, children represent multiplication as repeated addition in lots of different ways.

In Year 1, children use concrete and pictorial representations to solve problems.

In Year 2, children are introduced to the multiplication symbol.

Written by Ben Paul, 2023

Stage 2: Year 3/4 objectives

$34 \times 5=170$

Division

Key Vocabulary

Dividend - the number that is divided.	
Divisor - the number by which another is divided	
Exchange - change a number or expression for	
another of equal value,	
Factor - a number that multiples with another to make	
a product.	Partitioning - splitting a number into its component parts. Quotient - the result of division. Remainder - the amount left over after a division when the divisor is not a factor of the dividend. Scaling - enlarging or reducing a number by a given amount, called the scale factor.
Mental Strategies (see Teaching Children to Calculate Mentally for more details and activities to develop these) Using known multiplication and division facts to 12 x 12	
Halving (including dividing by 4 by halving twice, dividing by 8 by halving 3 times, dividing by 5 by dividing by 10 then doubling, etc.) Dividing by multiples of 10 Dividing by one-digit numbers and two-digit numbers Finding fractions, decimals and percentages	
Stage 1: Year 1/2 objectives	Skill: Solve 1-step problems using division (sharing)

At this stage, children solve
problems by sharing amounts into
equal groups.
In Year 1, children use concrete
and pictorial representations to
solve problems.
In Year 2, children are introduced
to the division symbol.

Written by Ben Paul, 2023

Written by Ben Paul, 2023

Model		Calculations	There are 42 crayons in a box. They are put in pots with three in each pot. How many pots are needed?
$\begin{aligned} & \text { (-) } \\ & \text { - }) \end{aligned}$	(1) (1)	$3 \longdiv { 4 2 }$	
Model		Calculations	
Tens	Ones		
	1 1 (1) 1 1 1 0 1 1 1 1 1 0	$\begin{gathered} 1 \\ {2} } \end{gathered}$	
Tens	Ones	Calculations	
		$\begin{gathered} 1 \quad 4 \\ \cline { 1 - 2 } \\ \hline 4^{1} 2 \end{gathered}$	

$372 \div 15=24 \mathrm{r} 12$

$$
372 \div 15=24 \frac{4}{5}
$$

$$
\begin{aligned}
& 1 \times 15=15 \\
& 2 \times 15=30
\end{aligned}
$$

either leave it as a remainder or convert it to a fraction.

This will depend on the context of

$$
3 \times 15=45
$$ the question.

$$
4 \times 15=60
$$

Children can also answer questions where the quotient

$$
5 \times 15=75
$$ needs to be rounded according to

$$
10 \times 15=150
$$ the context.

